Blue Planet

Blue Planet
Plant No Other Tree

Ronald Meeus | 20 Apr 2010 13:38
Blue Planet - RSS 2.0

But the breakthrough implementation of SpeedTree came with 2006's The Elder Scrolls IV: Oblivion, which used a version of SpeedTree that Bethesda modified according to research conducted with the University of Maryland's geology lab. The developers deepened their understanding of how soil erodes, how trees grow naturally in a landscape and how rocks form, and used that knowledge to make the first entirely computer-generated forest in a videogame. "We're very proud of what they did with our technology," Meredith affirms. "It showed the endless possibilities in solid videogaming applications."


After Oblivion, SpeedTree quickly became a household name in videogame development. The technology was featured in games like Call of Duty 3, Resistance: Fall of Man, Grand Theft Auto IV and Lord of the Rings: Conquest, not to mention more recent outings like Divinity II: Ego Draconis, Batman: Arkham Asylum and Empire: Total War. Big-name game publishers like EA, Take Two and Activision are recurrent licensees. And the development of the software itself has kept pace with its sales: SpeedTree now offers a library consisting of 150 foliage species, ranging from American Elms and Madagascan Baobabs to Weeping Willows and Cinnamon Ferns. The company has also developed a separate piece of middleware, SpeedGrass, to create naturally-looking soil overgrowth, and it's recently obtained its first licensee in the movie business. Industrial Light and Magic, one of the vessel companies of George Lucas' Skywalker Ranch empire, is using SpeedTree Cinema in an as-yet-unnamed animated movie.

It's not that 3D modelers didn't know how to make trees before SpeedTree came along. The problem is that it was an extraordinarily time-consuming chore. IDV tackled that problem by coding some basic laws of nature into computer algorithms. The software basically copied the natural principle that all growth in a tree takes place at the tip of a stem, where leaves can grow but auxillary buds can also develop into an entirely new stem, creating branches. Randomizing that process, they could make it so that no two software-generated trees, even of the same species, look the same. Then they added some physics properties to all of these components to make the self-generated trees react believably to wind and rain.

The process at the heart of of SpeedTree is called procedural modeling, and it's currently taking the videogame development world by storm. The idea is that by using parametrical data to model objects in videogame environments instead of crafting them by hand, you can not only save time but achieve a more natural-looking final product as well. Procedural modeling is also used for building realistically-looking roads (with random concrete deformation) and strewing props across a backdrop in a way that it looks like it's been done haphazardly.

Comments on