Forgot password
Enter the email address you used when you joined and we'll send you instructions to reset your password.
If you used Apple or Google to create your account, this process will create a password for your existing account.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Reset password instructions sent. If you have an account with us, you will receive an email within a few minutes.
Something went wrong. Try again or contact support if the problem persists.

Battery Breakthrough Leads to 20-Year Lifespan, 70 Percent Fast Charge

This article is over 10 years old and may contain outdated information
Titanium Dioxide Battery 310x

Titanium dioxide nanotubes mean batteries can be charged 10,000 times, last several decades.

The battery in your mobile device hasn’t changed much since the smartphone first took off in the last decade. For now, the secret to longer battery life is to cram more capacity into a similarly-sized device, while the tech inside hasn’t actually evolved. Your display, RAM, audio, and processing power all go up year-over-year at a considerably higher slope than the tried and true (and tired) Li-ion battery pack.

But a meaningful breakthrough has appeared on the horizon, if the findings of Nanyang Technology University and its Professor Chen Xiaodong hold any water. The new rechargeable battery pack is still Lithium ion (Li-ion), but it’s capable of going from dead to a 70 percent charge in roughly two minutes — a feat that takes 80-90 minutes with today’s average smartphone. Furthermore, the prototype battery can be recharged up to 10,000 times, a dramatic increase from the 500 cycles (two to three years) that current packs are capable of.

The secret? A gel made with titanium dioxide nanotubes, which replaces the graphite anode (anode being the negative pole in the battery system) found in virtually every Li-ion pack today. Titanium dioxide nurtures quicker chemical reactions in the battery system, which leads to the advertised fast charging. And the compound is easy to find, as it naturally occurs in soil, and is used in everything from sunscreen to food coloring.

Not only does the titanium dioxide alternative charge quicker, and last longer, but it doesn’t need any sort of binding additive (electrolytes, for example) that are typically required in Li-ion packs. No additives means more room for the anode substance, which leads to more energy in a given space/battery pack.

This is all in the lab experiment arena now, and the findings are the result of a three-year study. Along with attempting to manufacture prototype batteries on a larger scale, Professor Chen and the university have said the technology is already being licensed by a company, and batteries based on the tech could hit the market within the next two years.

Source: NTU

Recommended Videos

The Escapist is supported by our audience. When you purchase through links on our site, we may earn a small affiliate commission. Learn more about our Affiliate Policy